Hall Ticket Number:	
	Code No.: 9213 M

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.Tech. I Year (CSE) II-Semester (Make Up) Examinations, August-2016

Image Processing

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. Differentiate photopic and scotopic vision.
- 2. Find the number of bits required to store a 256 X 256 image with 32 gray levels.
- 3. Find DCT transform of a given 2 x 2 image $\begin{bmatrix} 3 & 6 \\ 6 & 4 \end{bmatrix}$.
- 4. What is the Walsh-Hedamard transform?
- 5. What is an 'edge' in an image? What are the mathematical operations used for edge detection?
- 6. What is the region splitting and merging operation in image segmentation?
- 7. Describe the Fidelity Criteria.
- 8. What is the role of encoder and decoder in a digital image data compression system?
- 9. Draw the block diagram of image restoration model.
- 10 List the different Noise Models.

Part-B $(5 \times 10 = 50 \text{ Marks})$ (All bits carry equal marks)

- 11. a) What are the fundamental steps involved in digital image processing? How an image is acquired?
 - b) Explain the application of X-ray imaging in image processing.
- 12. a) The image f(m,n) is given below. What will be the value of F(0,0) and explain its importance.

- b) Describe the image smoothing and sharpening operations in frequency domain.
- 13. a) State and explain various methods to find point, line and edges in the image.
 - b) Write algorithm to compute basic global threshold value and dynamic thresholding value.
- 14. a) Explain the Huffman encoding with suitable example. Calculate the compression ratio.
 - b) Derive forward and inverse transformations of KL-transform.
- 15. Describe constrained least square filtering for image restoration and derive its transfer function.
- 16. a) Describe the Sampling and Quantization techniques with neat diagram.
 - b) What is the significance of 2D-DFT and what are the properties of 2D-DFT? Prove the linearity of 2D-DFT.
- 17. Write short notes on any *two* of the following:
 - a) Run length coding
 - b) Spatial averaging masks
 - c) Inverse Filtering.